A COMPATIBILITY CONDITION BETWEEN INVARIANT RIEMANNIAN METRICS AND LEVI-WHITEHEAD DECOMPOSITIONS ON A COSET SPACE

BY JOSEPH A. WOLF(1)

- 0. **Introduction**. Let M = G/K be an effective coset space of a connected Lie group by a compact subgroup. Then there may be many G-invariant riemannian metrics on M. But one expects the algebraic structure of the pair (G, K) to have a strong influence on the curvatures of M relative to any G-invariant riemannian metric. For example
- (1) if G is semisimple with finite center and K is a maximal compact subgroup, then it is classical from symmetric space theory that all G-invariant riemannian metrics on M have every sectional curvature ≤ 0 ;
- (2) if G is commutative then every G-invariant riemannian metric on M is flat; and
- (3) if G is noncommutative and nilpotent then [7] every G-invariant riemannian metric on M has sectional curvatures of both signs.

Those results are proved by choosing an $\operatorname{ad}_G(K)$ -stable complement \mathfrak{M} to the Lie algebra \mathfrak{R} of K inside the Lie algebra \mathfrak{G} of G, and by performing calculations in \mathfrak{M} and in \mathfrak{G} in a manner justified by embedding G in the orthonormal frame bundle of M. But at certain crucial parts of those calculations one must have \mathfrak{G} either semisimple or nilpotent. The idea in this paper is to create a setup in which the calculations can still be carried out, by requiring that the complement \mathfrak{M} split as

 $\mathfrak{M} = (\mathfrak{M} \cap \mathfrak{R}) + (\mathfrak{M} \cap \mathfrak{L})$ orthogonal direct sum,

where

 $\mathfrak{G} = \mathfrak{R} + \mathfrak{L}$ is a Levi-Whitehead decomposition

and

 $\mathfrak{M} \cap \mathfrak{R}$ contains the nilpotent radical of \mathfrak{G} .

§2 is a study of the circumstances under which \mathfrak{M} can be chosen, and the Levi-Whitehead decomposition $\mathfrak{G} = \mathfrak{R} + \mathfrak{L}$ can be chosen, so that M has such an orthogonal splitting. We describe those circumstances by the condition (2.2) that the invariant riemannian metric on M be "consistent" with $\mathfrak{G} = \mathfrak{R} + \mathfrak{L}$.

Given the consistency condition (2.2), our main result (Theorem 3.9) says that every unit vector $X \in \mathfrak{M} \cap \mathfrak{R}$, orthogonal to the nilpotent radical \mathfrak{N} of \mathfrak{G} , is a

Received by the editors May 21, 1968.

⁽¹⁾ Research supported by an Alfred P. Sloan Research Fellowship and by National Science Foundation Grant GP-8008.

direction of negative mean curvature on M. Our applications (§4) essentially consist of observing that, if M has mean curvature ≥ 0 everywhere, then the consistency condition implies $\mathfrak{N} = (\mathfrak{M} \cap \mathfrak{R})$, i.e. $\mathfrak{R} = \mathfrak{R} + (\mathfrak{R} \cap \mathfrak{R})$ semidirect sum. The most striking of the applications is Theorem 4.4, which says:

Let M be a connected Riemannian manifold that has a solvable transitive group of isometries. Then the following conditions are equivalent.

- (i) M has mean curvature ≥ 0 everywhere.
- (ii) M has every sectional curvature ≥ 0 .
- (iii) M has every sectional curvature zero.
- (iv) M is isometric to the product of an euclidean space and a flat riemannian torus.

Theorem 4.7 adds negative curvature conditions in case M has a transitive nilpotent group of isometries, extending the results of [7] to mean curvature.

1. **Definitions and notation.** \mathfrak{G} is a real Lie algebra. We have the *nilpotent radical* \mathfrak{R} and the *solvable radical* \mathfrak{R} , characteristic nilpotent and solvable ideals in \mathfrak{G} defined by

M is the union of the nilpotent ideals of G,

R is the union of the solvable ideals of S.

The basic facts on \Re and \Re are the following.

(1.1) If C is a fully reducible group of automorphisms of \mathfrak{G} , then there are C-invariant semisimple subalgebras $\mathfrak{L} \subset \mathfrak{G}$ that map isomorphically onto $\mathfrak{G}/\mathfrak{R}$ under the projection $\varphi \colon \mathfrak{G} \to \mathfrak{G}/\mathfrak{R}$, and any two such subalgebras are conjugate by an automorphism ad \mathfrak{G} (exp n) of \mathfrak{G} where $n \in \mathfrak{R}$ is left fixed by every $c \in C$.

The existence is due to G. D. Mostow [3, Corollary 5.2], and the conjugacy statement is the result [5, Theorem 4] of E. J. Taft. In general a semisimple subalgebra $\mathfrak{L} \subseteq \mathfrak{G}$ such that $\varphi \colon \mathfrak{L} \cong \mathfrak{G}/\mathfrak{R}$ is called a *Levi factor* of \mathfrak{G} , and the Levi factors of \mathfrak{G} are just the maximal semisimple subalgebras.

(1.2) If $\mathfrak L$ is a Levi factor of $\mathfrak G$, then $\mathfrak G = \mathfrak R + \mathfrak L$ semidirect sum, $\mathfrak R + \mathfrak L$ (semidirect) is an ideal in $\mathfrak G$, and the derived algebra $[\mathfrak G, \mathfrak G] \subseteq \mathfrak R + \mathfrak L$.

The first assertion is immediate and the second follows from $\mathfrak{R} \subset \mathfrak{R}$. For the third, one notes that $[\mathfrak{R}, \mathfrak{R}] \subset \mathfrak{R}$ by Ado's Theorem and that $\mathrm{ad}_{\mathfrak{G}}(\mathfrak{L})$ normalizes $\mathrm{ad}_{\mathfrak{R}}(\mathfrak{R})$ in the derivation algebra of \mathfrak{R} .

Let M = G/K be a coset space of a Lie group by a closed subgroup. $\Re \subset \Im$ are the Lie algebras of $K \subseteq G$. An $\operatorname{ad}_G(K)$ -invariant subspace $\Re \subseteq \Im$ such that $\Im = \Re + \Re$ (vector space direct sum), is called an *invariant complement* for K. If an invariant complement for K exists, then M = G/K is called a *reductive coset space*.

K is called a reductive subgroup of G in case the group $\operatorname{ad}_G(K)$ of linear transformations of \mathfrak{G} is fully reducible. If K is a reductive subgroup of G, then $\operatorname{ad}_G(K)$ \mathfrak{R}

= \Re implies that M = G/K is a reductive coset space. The converse fails in the example

$$G = SL(2, \mathbb{R})$$
 and $K = \left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} : n \in \mathbb{Z} \right\}$.

However, compact subgroups, and semisimple subgroups with only finitely many components, are reductive subgroups.

2. The compatibility condition. We can now define the compatibility conditions with which we will operate. M = G/K is a coset space of a Lie group by a closed subgroup. \mathfrak{L} is a Levi factor of \mathfrak{G} and \mathfrak{M} is an invariant complement for K. If

$$(2.1) \mathfrak{M} = (\mathfrak{M} \cap \mathfrak{R}) + (\mathfrak{M} \cap \mathfrak{L}) \text{ and } \mathfrak{R} = (\mathfrak{M} \cap \mathfrak{R}) + (\mathfrak{R} \cap \mathfrak{R})$$

then we say that \mathfrak{L} splits \mathfrak{M} and that \mathfrak{M} is split by the Levi-Whitehead decomposition $\mathfrak{G} = \mathfrak{R} + \mathfrak{L}$. Suppose further that we have a G-invariant pseudo-riemannian metric ds^2 on M. Represent ds^2 by an $ad_G(K)$ -invariant inner product \langle , \rangle on \mathfrak{M} . If

(2.2)
$$\mathfrak{M} = (\mathfrak{M} \cap \mathfrak{R}) + (\mathfrak{M} \cap \mathfrak{L}),$$
$$\mathfrak{R} = (\mathfrak{M} \cap \mathfrak{R}) + (\mathfrak{R} \cap \mathfrak{R}) \quad \text{and} \quad \langle \mathfrak{M} \cap \mathfrak{R}, \mathfrak{M} \cap \mathfrak{L} \rangle = 0,$$

then we say that $\mathfrak L$ splits $\mathfrak M$ orthogonally and that ds^2 is consistent with the Levi-Whitehead decomposition $\mathfrak G = \mathfrak R + \mathfrak L$.

2.3. PROPOSITION. Let K be a closed reductive subgroup of a Lie group G. Then for every $\operatorname{ad}_G(K)$ -invariant Levi factor $\mathfrak L$ of $\mathfrak G$, there exists an invariant complement $\mathfrak M$ for K, such that $\mathfrak L$ splits $\mathfrak M$. If ds^2 is a G-invariant pseudo-riemannian metric on G/K, $\varphi \colon \mathfrak G \to \mathfrak G/\mathfrak R$ is the projection, and the representations of K on $\mathfrak R/(\mathfrak R \cap \mathfrak R)$ and $\mathfrak L/(\mathfrak L \cap \varphi^{-1} \varphi \mathfrak R)$ are disjoint, then it is automatic that $\mathfrak L$ splits $\mathfrak M$ orthogonally and ds^2 is consistent with $\mathfrak G = \mathfrak R + \mathfrak L$.

Proof. Mostow's result (1.1) provides an $ad_G(K)$ -invariant Levi factor $\mathfrak L$ of $\mathfrak G$. As K is reductive in G we have $ad_G(K)$ -invariant direct sum decompositions

$$\Re = \mathfrak{M}_1 + (\Re \cap \Re)$$
 and $\mathfrak{G}/\Re = \mathfrak{M}_2' + \varphi(\Re)$.

Now define

$$\mathfrak{M}_2 = \mathfrak{L} \cap \varphi^{-1}(\mathfrak{M}_2')$$
 and $\mathfrak{M} = \mathfrak{M}_1 + \mathfrak{M}_2$.

Then $\operatorname{ad}_G(K)\mathfrak{M}_i=\mathfrak{M}_i$ so \mathfrak{M} is an $\operatorname{ad}_G(K)$ -invariant subspace of \mathfrak{G} that satisfies (2.1). If $x\in\mathfrak{M}\cap\mathfrak{R}$ then $\varphi(x)\in\mathfrak{M}_2'\cap\varphi(\mathfrak{R})=0$ so $x\in\mathfrak{R}$; then $x\in\mathfrak{M}_1\cap(\mathfrak{R}\cap\mathfrak{R})=0$ so x=0; thus $\mathfrak{M}\cap\mathfrak{R}=0$. On the other hand

$$\dim \mathfrak{R} = \dim \mathfrak{M}_1 + \dim(\mathfrak{R} \cap \mathfrak{R})$$

and

$$\dim \mathfrak{G}/\mathfrak{R} = \dim \mathfrak{M}'_2 + \dim \varphi(\mathfrak{R}) = \dim \mathfrak{M}_2 + \dim \varphi(\mathfrak{R})$$
$$= \dim \mathfrak{M}_2 - \dim (\mathfrak{R} \cap \mathfrak{R}) + \dim \mathfrak{R}$$

so

$$\dim \mathfrak{G} = \dim \mathfrak{R} + \dim \mathfrak{G}/\mathfrak{R} = \dim \mathfrak{M} + \dim \mathfrak{R}.$$

Thus $\mathfrak M$ is a vector space complement to $\mathfrak R$ in $\mathfrak G$. Now $\mathfrak M$ is an invariant complement for K such that $\mathfrak L$ splits $\mathfrak M$.

Let ds^2 and the inner product \langle , \rangle on \mathfrak{M} be given. The representation of K on $\mathfrak{R}/(\mathfrak{R} \cap \mathfrak{R})$ is the representation $\mathrm{ad}_G|_K$ on \mathfrak{M}_1 ; the representation of K on $\mathfrak{L}/(\mathfrak{L} \cap \varphi^{-1}\varphi\mathfrak{R})$ is $\mathrm{ad}_G|_K$ on \mathfrak{M}_2 . If those two are disjoint then necessarily $\langle \mathfrak{M}_1, \mathfrak{M}_2 \rangle = 0$. Q.E.D.

We reformulate the metric portion of Proposition 2.3.

2.4. Proposition. Let M = G/K be a homogeneous pseudo-riemannian manifold with metric ds^2 , where K is a reductive subgroup of G. Let \mathcal{O} be the base point, $M_{\mathcal{O}}$ the tangent space at \mathcal{O} , χ the linear isotropy representation of K on $M_{\mathcal{O}}$, and $R_{\mathcal{O}}$ the subspace of $M_{\mathcal{O}}$ spanned by vector fields from elements of the solvable radical of \mathfrak{G} . Suppose that the representations of K induced by χ , on $R_{\mathcal{O}}$ and on $M_{\mathcal{O}}/R_{\mathcal{O}}$, are disjoint. Then $M_{\mathcal{O}} = R_{\mathcal{O}} + R_{\mathcal{O}}^{1}$ and ds^{2} is consistent with every Levi-Whitehead decomposition $\mathfrak{G} = \mathfrak{R} + \mathfrak{L}$ for which $\mathrm{ad}_{G}(K) \cdot \mathfrak{L} = \mathfrak{L}$.

For, in the notation of the proof of Proposition 2.3, $R_{\mathcal{O}}$ is spanned by the vector fields from \mathfrak{M}_1 while $R_{\mathcal{O}}^{\perp}$ is spanned by those from \mathfrak{M}_2 .

In the riemannian case we will be able to arrange that $\mathfrak{M}_1 = \mathfrak{M} \cap \mathfrak{R}$ contain the nilpotent radical \mathfrak{N} . For that, we need a technical lemma.

- 2.5. Lemma. In a connected nilpotent Lie group every compact subgroup is central.
- **Proof.** Let N be the connected nilpotent Lie group, $\pi \colon \widetilde{N} \to N$ the universal Lie group covering, and Γ the kernel of π . Then Γ is a discrete central subgroup of \widetilde{N} . Let C be a maximal compact subgroup of N and $\widetilde{C} = \pi^{-1}(C)$. Then C is a torus group, \widetilde{C} is a simply connected commutative subgroup of \widetilde{N} , and $\Gamma \subset \widetilde{C}$ such that $C = \widetilde{C}/\Gamma$ compact. As Γ is central in \widetilde{N} , and as \widetilde{N} is nilpotent, now \widetilde{C} is central in \widetilde{N} , so C is central in N. If E is any compact subgroup of N we have $n \in N$ such that $nEn^{-1} \subset C$, so $E \subset n^{-1}Cn = C$, proving E central in N. Q.E.D.
- 2.6. Proposition. Let M = G/K be an effective coset space of a connected Lie group by a compact subgroup. Then, for any $\operatorname{ad}_G(K)$ -invariant Levi factor $\mathfrak L$ of $\mathfrak L$, there is an invariant complement $\mathfrak M$ for K such that

$$(2.7) \quad \mathfrak{M} = (\mathfrak{M} \cap \mathfrak{R}) + (\mathfrak{M} \cap \mathfrak{L}), \quad \mathfrak{R} = (\mathfrak{M} \cap \mathfrak{R}) + (\mathfrak{R} \cap \mathfrak{R}), \quad and \quad \mathfrak{R} \subseteq \mathfrak{M} \cap \mathfrak{R}.$$

In particular, if G is a group of isometries for a riemannian metric on M, and if the metric is consistent with the Levi-Whitehead decomposition $\mathfrak{G} = \mathfrak{R} + \mathfrak{L}$, then in addition we can choose \mathfrak{M} so that $\mathfrak{M} \cap \mathfrak{R}$ has a subspace \mathfrak{A} such that

(2.8) $\mathfrak{M} = \mathfrak{N} + \mathfrak{A} + (\mathfrak{M} \cap \mathfrak{L}), \quad \mathfrak{M} \cap \mathfrak{R} = \mathfrak{N} + \mathfrak{A}, \quad orthogonal \ direct \ sums.$

Proof. Following Proposition 2.3 we take $\mathfrak{M} = \mathfrak{M}_1 + \mathfrak{M}_2$, invariant complement for K split by \mathfrak{L} , where \mathfrak{M}_1 is any $\mathrm{ad}_G(K)$ -invariant complement to $\mathfrak{R} \cap \mathfrak{R}$ in \mathfrak{R} .

Let N be the analytic subgroup of G for \mathfrak{N} . Then N is closed in G, so $N \cap K$ is compact. Let T be a maximal compact subgroup of N. It contains $N \cap K$ and is central in N by Lemma 2.5. Thus T is unique, hence normal in G. As T is a torus and G is connected now T is central in G. Thus $N \cap K$ is central in G. But G acts effectively on M, so K contains no nontrivial normal subgroup of G. That proves $N \cap K = \{1\}$. In particular $\mathfrak{N} \cap \mathfrak{N} = 0$. Thus $\mathfrak{N} = \mathfrak{N} + \mathfrak{U} + (\mathfrak{N} \cap \mathfrak{N})$, $\operatorname{ad}_G(K)$ -invariant direct sum, where \mathfrak{U} is any invariant complement to $\mathfrak{N} + (\mathfrak{N} \cap \mathfrak{N})$. For (2.7) we just choose $\mathfrak{M}_1 = \mathfrak{N} + \mathfrak{U}$.

Suppose further that ds^2 is consistent with $\mathfrak{G}=\mathfrak{R}+\mathfrak{L}$. Then we have another choice, say $\mathfrak{M}^*=\mathfrak{M}_1^*+\mathfrak{M}_2^*$, of invariant complement for K, with $\langle \mathfrak{M}_1^*, \mathfrak{M}_2^* \rangle = 0$ and $\mathfrak{R}=\mathfrak{M}_1^*+(\mathfrak{R}\cap\mathfrak{R})$. If $\psi:\mathfrak{M}\cong\mathfrak{G}/\mathfrak{R}$ and $\psi^*:\mathfrak{M}^*\cong\mathfrak{G}/\mathfrak{R}$ are induced by the projection $\mathfrak{G}\to\mathfrak{G}/\mathfrak{R}$, now $\psi^{-1}\psi^*:\mathfrak{M}^*\to\mathfrak{M}$ is a linear isometry carrying \mathfrak{M}_i^* to \mathfrak{M}_i . Thus $\langle \mathfrak{M}_1, \mathfrak{M}_2 \rangle = 0$, and we obtain (2.8) by choosing \mathfrak{A} to be the orthocomplement of \mathfrak{R} in \mathfrak{M}_1 . Q.E.D.

We will view the space \mathfrak{A} of (2.8) as the "gap" between nilpotent and solvable radicals of \mathfrak{G} , taken modulo \mathfrak{R} .

- 3. Mean curvature along the gap between the nilpotent and solvable radicals. We compute the mean curvature of a homogeneous riemannian manifold along a direction in the solvable radical complementary to the nilpotent radical. This is done by specializing the following general calculation to the case where the riemannian metric is consistent with a Levi-Whitehead decomposition.
- 3.1. Lemma. Let (M, ds^2) be a connected n-dimensional riemannian homogeneous space. Let $\emptyset \in M$. Let G be a connected transitive group of isometries of M and let M'_{\emptyset} denote the subspace of M_{\emptyset} consisting of tangent vectors Y_{\emptyset} where Y is in the derived algebra $[\mathfrak{G}, \mathfrak{G}]$. If $X_{\emptyset} \in M_{\emptyset}$ is a unit vector orthogonal to M'_{\emptyset} , then the mean curvature

$$(n-1)\mathbf{k}(X_{\mathcal{O}}) = \sum_{i} \langle [\{[X, E_{i}]_{\Re} + \frac{1}{4}[X, E_{i}]_{\Re}\}, X]_{\Re}, E_{i} \rangle$$

$$-\frac{1}{2} \sum_{i} ||[X, E_{i}]_{\Re}||^{2}$$

$$-\frac{1}{4} \sum_{i,j} \langle [X, E_{i}]_{\Re}, E_{j} \rangle \cdot \langle [X, E_{j}]_{\Re}, E_{i} \rangle,$$

where $\mathfrak{M} \subseteq \mathfrak{G}$ is an invariant complement to $K, X \in \mathfrak{M}$ represents $X_{\mathfrak{O}}, \langle , \rangle$ is the inner product on \mathfrak{M} from ds^2 , and $\{E_i\}$ is any orthonormal basis of \mathfrak{M} containing X.

Proof. We follow the method of Nomizu [4], using the notation

 $\alpha: \mathfrak{M} \times \mathfrak{M} \to \mathfrak{M}$ for the connection function,

 $\mathscr{U}: \mathfrak{M} \times \mathfrak{M} \to \mathfrak{M}$ for the symmetric part of α ,

 $\mathcal{R}: \mathfrak{M} \times \mathfrak{M} \times \mathfrak{M} \to \mathfrak{M}$ for the curvature tensor.

Now $(n-1)k(X) = \sum_{i \neq i_0} K_i = -\sum_{i \neq i_0} \langle \mathcal{R}(X, E_i)X, E_i \rangle = -\sum_i \langle \mathcal{R}(X, E_i)X, E_i \rangle$ where

 $\{E_i\}$ is an orthonormal basis of \mathfrak{M} , where $X = E_{i_0}$, and where K_i is the sectional curvature of the tangent 2-plane spanned by X and E_i . Thus

$$(3.3) (n-1)k(X) = -\sum_{i} \langle \mathscr{R}(X, E_i)X, E_i \rangle.$$

Using [4, formulae 9.6 and 13.1] and correcting a misprint in the latter,

$$\mathcal{R}(X, E_i)X = \alpha(X, \alpha(E_i, X)) - \alpha(E_i, \alpha(X, X)) - \alpha([X, E_i]_{\mathfrak{M}}, X) - [[X, E_i]_{\mathfrak{R}}, X].$$

$$\alpha(S, T) = \frac{1}{2}[S, T]_{\mathfrak{M}} + \mathcal{U}(S, T).$$

$$\mathcal{U}(S, T) = -\frac{1}{2}\sum_{i} \{\langle [S, E_j]_{\mathfrak{M}}, T \rangle + \langle [T, E_j]_{\mathfrak{M}}, S \rangle \} E_j.$$

Our hypothesis on X and $X_{\mathcal{O}}$ is that $\langle X, [A, B]_{\mathfrak{M}} \rangle = 0$ for all $A, B \in \mathfrak{M}$. In particular

$$\mathscr{U}(X,S) = \mathscr{U}(S,X) = -\frac{1}{2} \sum_{i} \langle [X,E_{i}]_{\mathfrak{M}}, S \rangle E_{i}.$$

Thus $\alpha(X, X) = 0$. Substituting that into (3.3) we have

(3.5)
$$(n-1)\mathbf{k}(X) = -\sum_{i} \langle \alpha(X, \alpha(E_{i}, X)), E_{i} \rangle + \sum_{i} \langle \alpha([X, E_{i}]_{\mathfrak{M}}, X), E_{i} \rangle + \sum_{i} \langle [[X, E_{i}]_{\mathfrak{K}}, X], E_{i} \rangle.$$

In order to evaluate the right-hand side of (3.5) we define coefficients b_{jk} by $[X, E_j]_{\mathfrak{M}} = \sum_k b_{jk} E_k$. Then, using (3.4),

$$2 \sum_{i} \langle [X, \mathcal{U}(E_{i}, X)]_{\mathfrak{M}}, E_{i} \rangle = -\sum_{i,j} \langle [X, \langle [X, E_{j}]_{\mathfrak{M}}, E_{i} \rangle E_{j}]_{\mathfrak{M}}, E_{i} \rangle$$

$$= -\sum_{i,j} \langle [X, E_{j}]_{\mathfrak{M}}, E_{i} \rangle^{2} = -\sum_{i,j} b_{ji}^{2}$$

$$= -\sum_{j} \left(\sum_{i} b_{ji}^{2} \right) = -\sum_{j} \| [X, E_{j}]_{\mathfrak{M}} \|^{2}$$

$$= -\sum_{i} \| [X, E_{i}]_{\mathfrak{M}} \|^{2} = \sum_{i} \langle [X, E_{i}]_{\mathfrak{M}}, [E_{i}, X]_{\mathfrak{M}} \rangle$$

$$= +\sum_{i,j} \langle \{\langle [X, E_{j}]_{\mathfrak{M}}, [E_{i}, X]_{\mathfrak{M}} \rangle\} E_{j}, E_{i} \rangle$$

$$= -2 \sum_{i} \langle \mathcal{U}(X, [E_{i}, X]_{\mathfrak{M}}), E_{i} \rangle.$$

In other words

$$(3.6) -\frac{1}{2}\sum_{i}\langle [X,\mathscr{U}(E_{i},X)]_{\mathfrak{M}},E_{i}\rangle -\frac{1}{2}\sum_{i}\langle \mathscr{U}(X,[E_{i},X]_{\mathfrak{M}}),E_{i}\rangle = 0.$$

Using (3.4) and (3.6) we compute

$$\begin{split} -\sum_{i} \langle \alpha(X, \alpha(E_{i}, X)), E_{i} \rangle \\ &= -\frac{1}{4} \sum_{i} \langle [X, [E_{i}, X]_{\mathfrak{M}}]_{\mathfrak{M}}, E_{i} \rangle - \sum_{i} \langle \mathscr{U}(X, \mathscr{U}(E_{i}, X)), E_{i} \rangle \\ &- \frac{1}{2} \sum_{i} \langle [X, \mathscr{U}(E_{i}, X)]_{\mathfrak{M}}, E_{i} \rangle - \frac{1}{2} \sum_{i} \langle \mathscr{U}(X, [E_{i}, X]_{\mathfrak{M}}), E_{i} \rangle \\ &= -\frac{1}{4} \sum_{i} \langle [X, [E_{i}, X]_{\mathfrak{M}}]_{\mathfrak{M}}, E_{i} \rangle - \sum_{i} \langle \mathscr{U}(X, \mathscr{U}(E_{i}, X)), E_{i} \rangle \\ &= -\frac{1}{4} \sum_{i} \langle [X, [E_{i}, X]_{\mathfrak{M}}]_{\mathfrak{M}}, E_{i} \rangle - \frac{1}{4} \sum_{i} \langle [X, E_{i}]_{\mathfrak{M}}, E_{j} \rangle \langle [X, E_{j}]_{\mathfrak{M}}, E_{i} \rangle. \end{split}$$

That gives us the first summand of the right-hand side of (3.5):

$$(3.7) \qquad -\sum_{i} \langle \alpha(X, \alpha(E_{i}, X)), E_{i} \rangle = -\frac{1}{4} \sum_{i} \langle [[X, E_{i}]_{\mathfrak{M}}, X]_{\mathfrak{M}}, E_{i} \rangle \\ -\frac{1}{4} \sum_{i,j} \langle [X, E_{i}]_{\mathfrak{M}}, E_{j} \rangle \langle [X, E_{j}]_{\mathfrak{M}}, E_{i} \rangle.$$

The second summand of the right-hand side of (3.5) is, again using (3.4),

$$\begin{split} &\sum_{i} \langle \alpha([X, E_{i}]_{\mathfrak{M}}, X), E_{i} \rangle \\ &= \frac{1}{2} \sum_{i} \langle [[X, E_{i}]_{\mathfrak{M}}, X]_{\mathfrak{M}}, E_{i} \rangle - \frac{1}{2} \sum_{i,j} \langle \{\langle [X, E_{j}]_{\mathfrak{M}}, [X, E_{i}]_{\mathfrak{M}} \rangle E_{j} \}, E_{i} \rangle \\ &= \frac{1}{2} \sum_{i} \langle [[X, E_{i}]_{\mathfrak{M}}, X]_{\mathfrak{M}}, E_{i} \rangle - \frac{1}{2} \sum_{i} ||[X, E_{i}]_{\mathfrak{M}}||^{2}. \end{split}$$

Using (3.7) now, the sum of the first two summands of the right-hand side of (3.5) is

$$(3.8) \qquad -\sum_{i} \langle \alpha(X, \alpha(E_{i}, X)), E_{i} \rangle + \sum_{i} \langle \alpha([X, E_{i}]_{\mathfrak{M}}, X), E_{i} \rangle$$

$$= +\frac{1}{4} \sum_{i} \langle [[X, E_{i}]_{\mathfrak{M}}, X]_{\mathfrak{M}}, E_{i} \rangle - \frac{1}{2} \sum_{i} \|[X, E_{i}]_{\mathfrak{M}}\|^{2}$$

$$-\frac{1}{4} \sum_{i} \langle [X, E_{i}]_{\mathfrak{M}}, E_{j} \rangle \cdot \langle [X, E_{j}]_{\mathfrak{M}}, E_{i} \rangle.$$

Adding $\sum_{i} \langle [[X, E_{i}]_{\Re}, X]_{\Re}, E_{i} \rangle$ to both sides of (3.8), our assertion (3.2) follows from (3.5). Q.E.D.

We apply Lemma 3.1 to the gap between the nilpotent and solvable radicals of G.

3.9. THEOREM. Let (M, ds^2) be a riemannian homogeneous space, G a transitive Lie group of isometries, K the isotropy subgroup at a point $\emptyset \in M$, and $\mathfrak L$ an $\mathrm{ad}_G(K)$ -invariant Levi factor of $\mathfrak L$, such that ds^2 is consistent with the Levi-Whitehead decomposition $\mathfrak L = \mathfrak R + \mathfrak L$. Choose an invariant complement $\mathfrak R = \mathfrak R + \mathfrak L + (\mathfrak R \cap \mathfrak L)$

for K that satisfies (2.8). Let $X \in \mathfrak{M}$ be a unit vector, $X_{\mathcal{O}} \in M_{\mathcal{O}}$ the corresponding unit tangent vector.

- 1. If $X \perp [\mathfrak{G}, \mathfrak{G}]_{\mathfrak{M}}$ then the mean curvature $k(X_{\mathfrak{O}}) \leq 0$, and $k(X_{\mathfrak{O}}) = 0$ if and only if (a) $X \in \mathfrak{N}$ and (b) $[X, \mathfrak{M}] = 0$.
 - 2. If $X \in \mathfrak{A}$ then $k(X_0) < 0$.

Proof. By choice of \mathfrak{M} and by $[\mathfrak{G}, \mathfrak{G}] \subset \mathfrak{N} + \mathfrak{L}$ we have an orthogonal direct sum decomposition

(3.10)
$$\mathfrak{M} = \mathfrak{N}' + \mathfrak{B} + (\mathfrak{M} \cap \mathfrak{L}), \quad \mathfrak{N}' + \mathfrak{B} = \mathfrak{M} \cap \mathfrak{R}, \quad \mathfrak{N}' \subseteq \mathfrak{N},$$
$$[\mathfrak{G}, \mathfrak{G}]_{\mathfrak{M}} = \mathfrak{N}' + (\mathfrak{M} \cap \mathfrak{L}), \quad \mathfrak{A} \subseteq \mathfrak{B}.$$

Let $X \in \mathfrak{B}$. Then we have an orthonormal basis $\{E_i\}$ of \mathfrak{M} containing X, such that each E_i is in \mathfrak{N}' , $\mathfrak{M} \cap \mathfrak{L}$ or \mathfrak{B} . We apply Lemma 3.1 with that basis.

Define coefficients by $[X, E_j]_{\mathfrak{M}} = \sum_k a_{jk} E_k$ and let $A = (a_{jk})$. Then

$$\langle [X, E_i]_{\mathfrak{M}}, E_i \rangle = a_{ij}$$
 and $\langle [X, E_i]_{\mathfrak{M}}, E_i \rangle = a_{ii}$

so

$$\sum_{i,j} \langle [X, E_i]_{\mathfrak{M}}, E_j \rangle \langle [X, E_j]_{\mathfrak{M}}, E_i \rangle = \operatorname{trace} (A \cdot {}^t A).$$

Take polar decomposition A = ST with S symmetric and T orthogonal. Then $A \cdot {}^{t}A = S \cdot {}^{t}S$. Let $S = (s_{ij})$, so

trace
$$(A \cdot {}^{t}A)$$
 = trace $(S \cdot {}^{t}S)$ = $\sum_{i,j} s_{ij}^{2} \ge 0$,

and note that $\sum s_{ij}^2 = 0$ if and only if S = 0, which is equivalent to A = 0. Thus

$$(3.11) -\frac{1}{4}\sum_{i}\langle [X,E_i]_{\mathfrak{M}},E_j\rangle\langle [X,E_j]_{\mathfrak{M}},E_i\rangle \leq 0$$

with equality if and only if $[X, \mathfrak{M}]_{\mathfrak{M}} = 0$.

That takes care of the last summand of (3.2). For the first two summands we define

$$(3.12) k_i = \langle [\{[X, E_i]_{\Re} + \frac{1}{4}[X, E_i]_{\Re}\}, X]_{\Re}, E_i \rangle - \frac{1}{2} | [[X, E_i]_{\Re}] |^2.$$

If $E_i \in \mathfrak{B}$ then $\langle [\mathfrak{G}, \mathfrak{G}]_{\mathfrak{M}}, \mathfrak{B} \rangle = 0$ implies $k_i = -\frac{1}{2} ||[X, E_i]_{\mathfrak{M}}||^2$. If $E_i \in \mathfrak{M} \cap \mathfrak{L}$ then $[\mathfrak{G}, X]_{\mathfrak{M}} \subset [\mathfrak{G}, \mathfrak{R}]_{\mathfrak{M}} \subset (\mathfrak{M} \cap \mathfrak{R}) \perp (\mathfrak{M} \cap \mathfrak{L})$ implies $\langle [\mathfrak{G}, X]_{\mathfrak{M}}, E_i \rangle = 0$ so

$$k_i = -\frac{1}{2} ||[X, E_i]_{\mathfrak{M}}||^2.$$

Thus

(3.13) if
$$E_i \in \mathfrak{B} + (\mathfrak{M} \cap \mathfrak{L})$$
 then $k_i = -\frac{1}{2} ||[X, E_i]_{\mathfrak{M}}||^2 \le 0$.

If $E_i \in \mathfrak{N}'$ then $E_i \in \mathfrak{N}$ so $[X, E_i] \in \mathfrak{N} \subseteq \mathfrak{M}$. Thus

(3.14) if
$$E_i \in \mathfrak{N}'$$
 then $k_i = -\frac{1}{4} \langle \operatorname{ad}(X)^2 E_i, E_i \rangle - \frac{1}{2} ||[X, E_i]||^2$.

As (ad X) $\mathfrak{N}'\subset\mathfrak{N}'$ we can stipulate that, for numbers $\{\lambda_b\}$ such that $\{\lambda_b, \lambda_b\}$ are the eigenvalues of (ad X) $|_{\mathfrak{N}'}$, each $E_i \in \mathfrak{N}'$ is contained in the sum of the subspaces of \mathfrak{N}'^{C} on which (for some $b=b_i$) ad $X-\lambda_b$ and ad $X-\lambda_b$ are nilpotent. That stipulation made, $||[X, E_i]||^2 \ge |\lambda_b|^2$ and $|\langle \operatorname{ad}(X)^2 E_i, E_i \rangle| \le |\lambda_b|^2$. So (3.14) implies

Combining (3.13) and (3.15) we have $\sum_i k_i \le 0$. Adding that inequality to (3.11), and applying Lemma 3.1, we conclude

(3.16)
$$k(X_{\mathcal{O}}) \leq 0$$
 with equality if and only if $[X, \mathfrak{M}]_{\mathfrak{M}} = 0$.

If $[X, \mathfrak{M}]_{\mathfrak{M}} = 0$ then $[X, \mathfrak{M}] \subseteq \mathfrak{R}$. As $\mathfrak{N} \subseteq \mathfrak{M}$ and $[X, \mathfrak{N}] \subseteq \mathfrak{N}$ it follows that $[X, \mathfrak{N}] = 0$. Then $\mathfrak{S} = XR + \mathfrak{N}$ is a nilpotent subalgebra of \mathfrak{G} . But $X \in \mathfrak{R}$ and $[\mathfrak{R}, \mathfrak{R}] \subseteq \mathfrak{N}$, so \mathfrak{S} is a nilpotent ideal in \mathfrak{R} . As \mathfrak{N} is the maximal nilpotent ideal of \mathfrak{R} it follows that $X \in \mathfrak{N}$. This fact and (3.16) imply the first statement of Theorem 3.9. If $X \in \mathfrak{A}$ then $X \notin \mathfrak{N}$, so $k(X_{\mathfrak{O}}) < 0$. That completes the proof of Theorem 3.9. Q.E.D.

- 4. Application to manifolds of nonnegative mean curvature. We first apply Theorem 3.9 to homogeneous riemannian manifolds.
- 4.1. THEOREM. Let (M, ds^2) be a connected homogeneous riemannian manifold, G a transitive Lie group of isometries, K an isotropy subgroup, and $\mathfrak L$ an $\mathrm{ad}_G(K)$ -invariant Levi factor of $\mathfrak L$ such that ds^2 is consistent with the Levi-Whitehead decomposition $\mathfrak L = \mathfrak R + \mathfrak L$.
- 1. If (M, ds^2) has mean curvature ≥ 0 everywhere, then the solvable radical \Re and the nilpotent radical \Re of $\mathfrak G$ satisfy $\Re = \Re + (\Re \cap \Re)$ semidirect sum.
- 2. If (M, ds^2) has mean curvature > 0 everywhere, then the derived group [G, G] of G is transitive on M.

Proof. If (M, ds^2) has mean curvature ≥ 0 everywhere, then, in the notation (2.8), Theorem 3.9 says $\mathfrak{A} = 0$, so $\mathfrak{M} \cap \mathfrak{R} = \mathfrak{N}$; thus $\mathfrak{R} = (\mathfrak{M} \cap \mathfrak{R}) + (\mathfrak{R} \cap \mathfrak{R})$ $= \mathfrak{R} + (\mathfrak{R} \cap \mathfrak{R})$. If further (M, ds^2) has mean curvature > 0 everywhere, then Theorem 3.9 says $\mathfrak{M} = [\mathfrak{G}, \mathfrak{G}]_{\mathfrak{M}}$, so the derived group G' = [G, G] has an open orbit $G'(\mathfrak{O}) \subseteq M$. As $G'(\mathfrak{O})$ is complete and M is connected, $G'(\mathfrak{O}) = M$, so G' is transitive on M. Q.E.D.

- 4.2. COROLLARY. Let (M, ds^2) be a connected riemannian homogeneous manifold, G a transitive Lie group of isometries of M, $\emptyset \in M$, and K the isotropy subgroup of G at \emptyset . Let R_{\emptyset} denote the subspace of the tangent space M_{\emptyset} consisting of vectors Y_{\emptyset} where Y is contained in the solvable radical \Re of \mathfrak{G} . Suppose that the linear isotropy representation of K splits into disjoint representations on R_{\emptyset} and R_{\emptyset}^{\perp} .
- 1. If (M, ds^2) has mean curvature ≥ 0 everywhere, then \Re is related to the nilpotent radical \Re of \Im by $\Re = \Re + (\Re \cap \Re)$.

2. If (M, ds^2) has mean curvature > 0 everywhere, then the derived group of G is transitive on M.

Proof. Let \mathfrak{L} be any $\operatorname{ad}_G(K)$ -invariant Levi factor of \mathfrak{G} . Proposition 2.4 says that ds^2 is consistent with the Levi-Whitehead decomposition $\mathfrak{G} = \mathfrak{R} + \mathfrak{L}$. Our assertions now follow from Theorem 4.1. Q.E.D.

In order to apply Theorem 4.1 to the case of a transitive solvable group of isometries, we must first prove the following lemma about a simply transitive nilpotent group of isometries. Note that the lemma extends the positive curvature portion of [7].

- 4.3. Lemma. Let (N, ds^2) be a connected nilpotent Lie group with a left invariant riemannian metric. Then the following conditions are equivalent.
 - (i) (N, ds^2) has mean curvature ≥ 0 everywhere.
 - (ii) (N, ds²) has every sectional curvature zero.
 - (iii) N is commutative.

Proof. As (iii) \Rightarrow (ii) \Rightarrow (i) trivially we need only check that (i) \Rightarrow (iii). So assume that (N, ds^2) has mean curvature ≥ 0 everywhere. In the context of Theorem 3.9,

$$G = N$$
, $K = \{1\}$, $\mathfrak{L} = 0$, $\mathfrak{M} = \mathfrak{N}$,

and consistency of ds^2 with $\mathfrak{G} = \mathfrak{R} + \mathfrak{L}$ is automatic. Now Theorem 3.9 says that there is no noncentral element $X \in \mathfrak{N}$ such that $X \perp [\mathfrak{N}, \mathfrak{N}]$. But nilpotence of \mathfrak{N} implies that in the lower central series

$$\mathfrak{N} = \mathfrak{N}_0 \supset \mathfrak{N}_1 \supset \cdots \supset N_s \supseteq \mathfrak{N}_{s+1} = 0, \quad \mathfrak{N}_{n+1} = [\mathfrak{N}, \mathfrak{N}_k],$$

any vector space complement to $\mathfrak{N}_1 = [\mathfrak{N}, \mathfrak{N}]$ generates \mathfrak{N} . Let $[\mathfrak{N}, \mathfrak{N}]^{\perp}$ be the complement. As it consists of central elements of \mathfrak{N} (our application of Theorem 3.9), it must be all of \mathfrak{N} . Thus N is commutative. Q.E.D.

Now we have a general result on the curvature of riemannian solvmanifolds.

- 4.4. THEOREM. Let (M, ds^2) be a connected riemannian manifold that has a solvable transitive group of isometries. Then the following conditions are equivalent.
 - (i) (M, ds^2) has mean curvature ≥ 0 everywhere.
 - (ii) (M, ds^2) has every sectional curvature ≥ 0 .
 - (iii) (M, ds^2) has every sectional curvature zero.
- (iv) (M, ds^2) is isometric to the product of an euclidean space and a flat riemannian torus.

Proof. As $(iv) \Rightarrow (iii) \Rightarrow (ii) \Rightarrow (i)$ trivially we need only check that $(i) \Rightarrow (iv)$. So assume that (M, ds^2) has mean curvature ≥ 0 .

G denotes the closure of a solvable transitive group of isometries of (M, ds^2) in the full group of isometries. So G is a solvable transitive Lie group of isometries. Let K be an isotropy subgroup. $\mathfrak G$ is its own solvable radical $\mathfrak R$, so the $\mathrm{ad}_G(K)$ -invariant Levi factor $\mathfrak L=0$, and ds^2 is consistent with $\mathfrak G=\mathfrak R+\mathfrak L=\mathfrak R$. Our invariant complement $\mathfrak M$ for K satisfying (2.8) now has the form $\mathfrak M=\mathfrak N+\mathfrak A$, and Theorem 3.9 says $\mathfrak A=0$.

Let N be the analytic subgroup of G for \mathfrak{N} . Now we have an open orbit $N(\mathcal{O}) \subset M$. As $N(\mathcal{O})$ is complete and M is connected, the two are equal. Thus N is transitive on M. As G acts effectively on M, also N acts effectively, so Lemma 2.5 says $K \cap N = \{1\}$. That proves N simply transitive on M. Lemma 4.3 says that (M, ds^2) is flat and N is commutative. It follows [6, Théorème 4] that (M, ds^2) is the product of an euclidean space and a flat riemannian torus. Q.E.D.

4.5. COROLLARY. Let (M, ds^2) be a connected riemannian Einstein manifold that has a solvable transitive group of isometries. Then either (M, ds^2) has vanishing Ricci tensor and is isometric to the product of an euclidean space with a flat riemannian torus, or (M, ds^2) has negative definite Ricci tensor.

Proof. The Einstein homogeneous hypothesis says that (M, ds^2) has constant mean curvature, say k. If $k \ge 0$ then Theorem 4.4 says that $(R_{ij}) \equiv 0$ and that (M, ds^2) is the product of an euclidean space with a flat riemannian torus. If k < 0 then (R_{ij}) is negative definite. Q.E.D.

For examples of the latter case of Corollary 4.5, let (M, ds^2) be a noncompact irreducible riemannian symmetric space, G the largest connected group of isometries, K an isotropy subgroup, and G=NAK an Iwasawa decomposition. Then S=NA is a simply transitive solvable Lie group of isometries of (M, ds^2) , and (M, ds^2) is a connected riemannian Einstein manifold with negative definite Ricci tensor. G. Jensen [2] has shown that this example is essentially exhaustive in dimensions ≤ 4 .

The following lemma is similar to results of G. Jensen [2].

4.6. Lemma. Let G be a Lie group, let ds^2 be a left invariant riemannian metric on G, and let X be a nonzero central element of the Lie algebra \mathfrak{G} . Then the mean curvature $k(X) \ge 0$, and k(X) = 0 if and only if X is orthogonal to the derived algebra of \mathfrak{G} .

Proof. We use the notation of the proof of Lemma 3.1. Note $\mathfrak{M} = \mathfrak{G}$. We take X to be a unit vector and $\{E_i\}$ to be an orthonormal basis of \mathfrak{G} that contains X. Then (3.3) holds. As X is central in \mathfrak{G} , the analog of (3.4) is

$$\mathscr{U}(S, X) = \mathscr{U}(X, S) = -\frac{1}{2} \sum_{i} \langle [S, E_i], X \rangle E_i.$$

We still have $\mathcal{U}(X, X) = 0$, so $\alpha(X, X) = 0$ and (3.5) holds. But $[X, E_t] = 0$ simplifies (3.5) to

$$(n-1)k(X) = -\sum_{i} \langle \alpha(X, \alpha(E_i, X)), E_i \rangle$$

$$= \frac{1}{2} \sum_{i,j} \langle \alpha(X, \langle [E_i, E_j], X \rangle E_j), E_i \rangle$$

$$= \frac{1}{2} \sum_{i,j} \langle [E_i, E_j], X \rangle \cdot \langle \alpha(X, E_j), E_i \rangle$$

$$= -\frac{1}{4} \sum_{i,j,k} \langle [E_i, E_j], X \rangle \cdot \langle \langle [E_j, E_k], X \rangle E_k, E_i \rangle$$

$$= -\frac{1}{4} \sum_{i,j} \langle [E_i, E_j], X \rangle \cdot \langle [E_j, E_i], X \rangle$$

$$= \frac{1}{4} \sum_{i,j} \langle [E_i, E_j], X \rangle^2.$$

Thus $k(X) \ge 0$, and k(X) = 0 if and only if each $\langle [E_i, E_j], X \rangle = 0$, which is equivalent to $\langle [\mathfrak{G}, \mathfrak{G}], X \rangle = 0$. Q.E.D.

We now combine Lemmas 4.3 and 4.6, extending our calculations [7] from sectional curvature to mean curvature, and sharpening Theorem 4.4 in the case of a nilpotent group. After hearing the result, G. Jensen gave another proof of Theorem 4.7 [2, Theorem 4].

- 4.7. THEOREM. Let (M, ds^2) be a connected riemannian manifold that has a nilpotent transitive group of isometries. Then the following conditions are equivalent.
 - (i) (M, ds^2) has mean curvature ≥ 0 everywhere.
 - (ii) (M, ds^2) has mean curvature = 0 everywhere.
 - (iii) (M, ds^2) has mean curvature ≤ 0 everywhere.
 - (iv) (M, ds^2) has every sectional curvature ≥ 0 .
 - (v) (M, ds^2) has every sectional curvature = 0.
 - (vi) (M, ds^2) has every sectional curvature ≤ 0 .
- (vii) (M, ds^2) is isometric to the product of an euclidean space and a flat riemannian torus.

Proof. Let N denote the identity component of the closure of a nilpotent transitive group of isometries. Then N is a connected nilpotent transitive Lie group of isometries of (M, ds^2) . Its isotropy subgroups are central by Lemma 2.5, hence trivial; thus N is simply transitive on (M, ds^2) . Now we may view ds^2 as a left invariant riemannian metric on N.

Lemma 4.3 says that (i) implies (v); so (ii) implies (v).

We use Lemma 4.6 to prove that (iii) implies (v). Let \mathfrak{Z} be the last nonzero term of the lower central series of \mathfrak{R} . Then \mathfrak{Z} is central in \mathfrak{R} . Let $0 \neq X \in \mathfrak{Z}$. Assume (iii), so $k(X) \leq 0$. Lemma 4.6 says $k(X) \geq 0$. Thus k(X) = 0 and Lemma 4.6 says $\langle [\mathfrak{R}, \mathfrak{R}], X \rangle = 0$. If \mathfrak{R} is noncommutative then $X \in \mathfrak{Z} \subset [\mathfrak{R}, \mathfrak{R}]$ and so $\langle [\mathfrak{R}, \mathfrak{R}], X \rangle$

 $\neq 0$. That proves N commutative, so every sectional curvature of (N, ds^2) is zero. Thus (iii) implies (v).

Now (i), (ii) and (iii) each implies (v). It follows that (iv) and (vi) each implies (v). But (v) implies (vii) by [6, Théorème 4], and (vii) clearly implies each of (i), (ii), (iii), (iv), (v) and (vi). Q.E.D.

4.8. COROLLARY. Let (M, ds^2) be a connected riemannian Einstein manifold that has a nilpotent transitive group of isometries. Then (M, ds^2) is isometric to the product of an euclidean space and a flat riemannian torus.

Proof. We have the hypothesis of Theorem 4.7 as well as condition (i), (ii) or (iii); thus we have condition (vii) of Theorem 4.7. Q.E.D.

Our last application is a refinement of [8, Corollary 5.8].

4.9. Theorem. Let (M, ds^2) be a compact connected locally homogeneous riemannian manifold with mean curvature ≥ 0 everywhere. Suppose that the fundamental group $\pi_1(M)$ has a solvable subgroup of finite index.

Let $\pi\colon \widetilde{M} \to M$ be the universal riemannian covering, G the largest connected group of isometries of $(\widetilde{M}, \pi^* ds^2)$, K an isotropy subgroup of G, $\mathfrak L$ an $\operatorname{ad}_G(K)$ -invariant Levi factor of $\mathfrak L$ and L its analytic subgroup of L and L the solvable and nilpotent radicals of L and L and L their analytic subgroups of L and L the group L and L and L their analytic subgroups of L and L denote the group L and L are the group L are the group L and L are the group L are the group L and L are the group L are the group L and L are the group L are the group L and L are the group L are the group L and L are the group L are the group L are the group L are the group L and L are the group L are the group L and L are the group L are the group L and L are the group L are the group L and L are the group L are the group L and L are the group L and L are the group L and L are the group L are the group

- 1. L is compact.
- 2. $R = N \cdot (K \cap R)_0$ semidirect product, where $(K \cap R)_0$ is a torus group whose Lie algebra $\Re \cap \Re$ acts effectively on \Re in the adjoint representation.
- 3. Γ has a torsion free normal nilpotent subgroup Δ of finite index, $\Delta \subseteq N \cdot Z_L(N)_0$ where $Z_L(N)$ is the centralizer of N in L, and Δ projects isomorphically to a discrete subgroup with compact quotient in N.

Proof. Compactness of L is part of [8, Corollary 5.8], and the decomposition $R = N \cdot (K \cap R)_0$ follows from Theorem 4.1. In the proof of [8, Corollary 5.8] it is shown that Γ has a nilpotent subgroup Δ of finite index, and that the identity component of the closure of $R\Delta$ in G has form

$$F = R \cdot U$$
 for some torus $U \subseteq L$.

Enlarge U to a maximal torus T of F. Then $T = T_N \cdot T_{R/N} \cdot U$ local direct product, where T_N is a maximal torus of N and $T_{R/N}$ is an $\mathrm{ad}_G(R)$ -conjugate of $(K \cap R)_0$. These constructions are not changed if Δ is cut down to a subgroup of finite index. So we first cut Δ down to $\Delta \cap F$, then [8, (4.5)] to a torsion free group, and finally to a normal subgroup of Γ .

Let V be the kernel of the action of T on N, i.e. the centralizer $Z_T(N)$. Then $T_N \subset V_0 \subset T_N \cdot U$. Let $F^* = F/V$; then $F^* = N^* \cdot T^*$ where $N^* = N/T_N$ simply connected nilpotent group and

$$T^* = (T_{R/N} \cdot U)/\{(T_{R/N} \cdot U) \cap V\}.$$

 Δ^* is the projection of Δ to F^* . As Δ is a discrete subgroup with compact quotient in F, the same is true of Δ^* in F^* . By construction of F^* and the fact that T_N is central in F, conjugation represents T^* faithfully as a group of automorphisms of N^* , so L. Auslander's result [1] says that $\Delta^* \cap N^*$ has finite index in Δ^* . Again cutting Δ down, we may assume $\Delta^* \subset N^*$, i.e. that $\Delta \subset N \cdot Z_U(N)_0 \subset N \cdot Z_L(N)_0$. Q.E.D.

REFERENCES

- 1. L. Auslander, Bieberbach's theorems on space groups and discrete uniform subgroups of Lie groups, Ann. of Math. 71 (1960), 579-590.
 - 2. G. Jensen, Homogeneous Einstein spaces, Thesis, University of California, Berkeley, 1968.
- 3. G. D. Mostow, Fully reducible subgroups of algebraic groups, Amer. J. Math. 78 (1956), 200-221.
- 4. K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65.
- 5. E. J. Taft, Orthogonal conjugacies in associative and Lie algebras, Trans. Amer. Math. Soc. 113 (1964), 18-29.
- 6. J. A. Wolf, Sur la classification des variétés riemanniennes homogènes à courbure constante, C. R. Acad. Sci. Paris 250 (1960), 3443-3445.
 - 7. ——, Curvature in nilpotent Lie groups, Proc. Amer. Math. Soc. 15 (1964), 271-274.
 - 8. ——, Growth of finitely generated solvable groups and curvature of riemannian manifolds,
- J. Differential Geometry, (to appear).

University of California, Berkeley, California